\(\int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx\) [49]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 42 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=\frac {\cos (e+f x)}{c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \]

[Out]

cos(f*x+e)/c/f/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {2920, 2817} \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=\frac {\cos (e+f x)}{c f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}} \]

[In]

Int[Cos[e + f*x]^2/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

Cos[e + f*x]/(c*f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2))

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx}{a c} \\ & = \frac {\cos (e+f x)}{c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.12 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.88 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )}{f \sqrt {a (1+\sin (e+f x))} (c-c \sin (e+f x))^{5/2}} \]

[In]

Integrate[Cos[e + f*x]^2/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]))/(f*Sqrt[a*(1 + Sin[e + f*x])]*
(c - c*Sin[e + f*x])^(5/2))

Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.81

method result size
default \(-\frac {\left (-\cos \left (f x +e \right )+1+\sin \left (f x +e \right )\right ) \left (1+\cos \left (f x +e \right )\right )}{f \left (-\cos \left (f x +e \right )+\sin \left (f x +e \right )-1\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{2}}\) \(76\)

[In]

int(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(-cos(f*x+e)+1+sin(f*x+e))*(1+cos(f*x+e))/(-cos(f*x+e)+sin(f*x+e)-1)/(a*(1+sin(f*x+e)))^(1/2)/(-c*(sin(f*
x+e)-1))^(1/2)/c^2

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.45 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - a c^{3} f \cos \left (f x + e\right )} \]

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c^3*f*cos(f*x + e)*sin(f*x + e) - a*c^3*f*cos(f*x + e))

Sympy [F]

\[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {\cos ^{2}{\left (e + f x \right )}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(cos(f*x+e)**2/(c-c*sin(f*x+e))**(5/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(cos(e + f*x)**2/(sqrt(a*(sin(e + f*x) + 1))*(-c*(sin(e + f*x) - 1))**(5/2)), x)

Maxima [F]

\[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{\sqrt {a \sin \left (f x + e\right ) + a} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(5/2)), x)

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.31 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {1}{2 \, \sqrt {a} c^{\frac {5}{2}} f \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}} \]

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

-1/2/(sqrt(a)*c^(5/2)*f*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi +
1/2*f*x + 1/2*e)^2)

Mupad [B] (verification not implemented)

Time = 10.08 (sec) , antiderivative size = 88, normalized size of antiderivative = 2.10 \[ \int \frac {\cos ^2(e+f x)}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {2\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (4\,{\sin \left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+\sin \left (2\,e+2\,f\,x\right )-2\right )}{c^3\,f\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\left (12\,{\sin \left (e+f\,x\right )}^2-15\,\sin \left (e+f\,x\right )+\sin \left (3\,e+3\,f\,x\right )+4\right )} \]

[In]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(1/2)*(c - c*sin(e + f*x))^(5/2)),x)

[Out]

-(2*(-c*(sin(e + f*x) - 1))^(1/2)*(sin(2*e + 2*f*x) + 4*sin(e/2 + (f*x)/2)^2 - 2))/(c^3*f*(a*(sin(e + f*x) + 1
))^(1/2)*(sin(3*e + 3*f*x) - 15*sin(e + f*x) + 12*sin(e + f*x)^2 + 4))